基礎関数・公式 [オイラーの公式]1 : 世界で最も美しい公式の見かた、使いかた 世界で最も美しいといわれる式 e^(iπ)=-1 はオイラーの公式 e^(iθ)= cosθ + i sinθ から算出される。基礎から応用まで解説。指数関数・三角関数・複素平面を統合する仕組みを図とともに理解。 2021.10.12 2025.11.11 基礎関数・公式
基礎関数・公式 [三角関数]2:sin と cos のたし算 と ひき算 はじめに\(sin x \) と \(cos x \)のたし算 / ひき算について。つまり、\( a \cdot cos x ± b \cdot sinx \) の型。この型は、\( \sqrt{a^2+b^2} \cdot cos(x ̠... 2025.09.22 2025.11.11 基礎関数・公式
基礎関数・公式 [三角関数]1:加法定理はベクトルの内積計算と同じ ベクトルの内積として三角関数の加法定理をみれば、そのしくみは簡単にわかる(図でも書いてみれば、そりゃそうか。。。の一発理解レベル) 2025.09.20 2025.11.09 基礎関数・公式
指数・対数 [e:ネイピア数] “e” についての覚書3: 指数関数 e^x の定義式の導入のしかたとその意味。 ”1/e” の定義式の導入もついでに ネイピア数 e の定義式をもとに、指数関数 e^x がどのように導かれるかを式展開で理解。x 乗の役割を直観的に捉えられるようにするための覚書。e^x があれば、1/eはついでの理解になるので簡単に追記 2025.11.24 2025.11.25 指数・対数
指数・対数 [e:ネイピア数] “e” についての覚書2:対数の微分 ( ln x)’ = 1/x の導入、e の微分への登場とその理解 対数 logₐx の微分を基礎から式展開で追い、底の変換公式とネイピア数 e が自然に現れる理由を解説。オイラーが発見した極限式、平均値定理による導出も併せて整理した覚書。 2025.11.24 2025.11.25 指数・対数
指数・対数 [e:ネイピア数] “e” についての覚書1:ネイピア数 “e” とは何か? 定義式から読み解く “e=2.718…”の意味 “増えた分もまた増える”という複利のイメージと、ネイピア数 e の定義式をたどることで、その式が意味するところのひとつの見方を。e の値がなぜ出るのか、数学的な背景と直観的な理解をつなげる覚書。 2025.11.03 2025.11.25 指数・対数
座標・単位・実数・虚数 [虚数] 虚数とは?虚数のとらえ方とその特徴。&虚数と実数を組み合わせた世界 虚数をとらえるのに、実数という元数に、もう一つの元数を加えたものと捉える(直線から平面に広げる感じ)。つまり、二元数とした時に追加した元数の名前が虚数で単位がi。実数軸と虚数軸がなす平面を複素平面。この平面上での、iの振る舞いは面白い。iをかけると90°づつまわりだす。 2021.11.05 2025.11.09 座標・単位・実数・虚数
座標・単位・実数・虚数 [単位] 角度”ラジアン”が便利な理由 日常の角度表示と違い(度数表示:90°とか360°とか)、数学、物理ではラジアン表示(π)が主に使用される。圧倒的に使い勝手が良いからである。ラジアン表記の意味と使い勝手の良いところを説明。ラジアンの値は、r=1の円(周長:2π)を、中心角Θで切り取った時の ”円弧の長さ” である。 2021.07.20 2025.11.09 座標・単位・実数・虚数
座標・単位・実数・虚数 [極座標] 座標軸→ピタゴラスの定理→三角関数→極座標までの流れ 工学で使用される座標軸の定義と極座標の定義の話。極座標は定義を忘れないように、はじまりのピタゴラスの定理から三角関数の話、極座標の定義への利用までの流れまでの覚書 2021.07.19 2025.11.09 座標・単位・実数・虚数