PR

公式

オイラーの公式

2. オイラーの公式 : 世界で最も美しい公式の導き方

オイラーの公式は、基本、指数関数(e^θ) と 三角関数(sinθ、cosθ)の等式化であるが、ただこれを関連付ける時に、e^θ、sinθ、cosθ の各々3つが持つ一般的な性質を, マクローリン展開(級数展開)を利用して見事に組み合わせている。この成立過程も非常に美しい。このあたりの話を。。。
オイラーの公式

1. オイラーの公式 : 世界で最も美しい公式の見かた、使いかた

世界で最も美しいといわれる式 e^(iπ)=-1 はオイラーの公式 e^(iθ)= cosθ + i sinθ から算出される。このオイラーの公式の背景が美しいと言われる根拠とこの式のその使われ方を少し。美しい公式だね” だけでは、ちょっともったいない
座標・単位・基礎関数

4. sin x と cos x のたし算 と ひき算

はじめに\(sin x \) と \(cos x \)のたし算・ひき算、つまり\( a \cdot cos x ± b \cdot sinx \) の型の三角関数は、\( \sqrt{a^2+b^2} \cdot cos(x ̠∓ θ ) ...
座標・単位・基礎関数

3. 三角関数:加法定理はベクトルの内積計算と同じ

ベクトルの内積として三角関数の加法定理をみれば、そのしくみは簡単にわかる(図でも書いてみれば、そりゃそうか。。。の一発理解レベル)
スポンサーリンク