PR

数学(高校)

指数

3. 指数で0乗が1になる理由

どんな数字aでも0乗は常に”1”。これは、分母、分子に同じ数のaが並んで約分されて1になるため。これは、指数にマイナスがつく場合は逆数になっている事を知っているとすっとわかる。概要をなるべく簡単に説明。
指数

2. 小数をもつ指数の便利な見方 (10の乗数のとき)、対数もついでに

指数に小数点を含むべき乗数において、全ての実数の表現ができるのであるが、10のべき乗の指数が小数点を含む場合、整数部分はその数字の桁とリンクし、小数点以下は10進法での数字の並びとみれば、元の数字がだいたい見積れるようになる。
指数

1. 指数の四則計算のしくみ(たし算、ひき算、かけ算、わり算)と、小数点のついた指数の見方

指数が整数の時は抵抗がないのに、10の1/2乗(分数乗)、10の‐3乗(マイナス乗)となったとたんに”あれっ?”となる方へ。指数の見方&特徴の簡単な説明と、指数の計算(足し算、引き算、かけ算、わり算(分数))の中身について。意味がわかれば、結構簡単。例えば。。10の1/2乗は、2乗すると10になる数。(答えは√10)
実数・虚数

3. 虚数とは?虚数のとらえ方とその特徴。&虚数と実数を組み合わせた世界

虚数をとらえるのに、実数という元数に、もう一つの元数を加えたものと捉える(直線から平面に広げる感じ)。つまり、二元数とした時に追加した元数の名前が虚数で単位がi。実数軸と虚数軸がなす平面を複素平面。この平面上での、iの振る舞いは面白い。iをかけると90°づつまわりだす。
実数・虚数

2. 実数の世界:実数は無理数と有理数で成り立ち”連続性”あり。無理数は”無” +”理数”

有理数と無理数の違い。有理数は比(分数)で表記できる数、無理数はそれ以外の数とされている(理数とは比であらわされる数)。無理数への理解に、この二つを同じ表記方法としてみる。二つは循環する無限小数/循環していない無限小数 で分類できる。
実数・虚数

1. 1=0.999・・って?

1= 0.9999・・・への理解は、同じ点を示しているが表示が違うだけと捉える。実数の世界では点は連続しているのである。ほぼ等しいのではなく、(極限では)等しいと理解する。この等式の両辺は”等しい”のである。
スポンサーリンク