PR

頭の片隅に(数学)

基礎関数・公式

[オイラーの公式]2 : 世界で最も美しい公式の導き方

オイラーの公式は、基本、指数関数(e^θ) と 三角関数(sinθ、cosθ)の等式化であるが、ただこれを関連付ける時に、e^θ、sinθ、cosθ の各々3つが持つ一般的な性質を, マクローリン展開(級数展開)を利用して見事に組み合わせている。この成立過程も非常に美しい。このあたりの話を。。。
基礎関数・公式

[オイラーの公式]1 : 世界で最も美しい公式の見かた、使いかた

世界で最も美しいといわれる式 e^(iπ)=-1 はオイラーの公式 e^(iθ)= cosθ + i sinθ から算出される。基礎から応用まで解説。指数関数・三角関数・複素平面を統合する仕組みを図とともに理解。
基礎関数・公式

[三角関数]2:sin と cos のたし算 と ひき算

はじめに\(sin x \) と \(cos x \)のたし算 / ひき算について。つまり、\( a \cdot cos x ± b \cdot sinx \) の型。この型は、\( \sqrt{a^2+b^2} \cdot cos(x ̠...
基礎関数・公式

[三角関数]1:加法定理はベクトルの内積計算と同じ

ベクトルの内積として三角関数の加法定理をみれば、そのしくみは簡単にわかる(図でも書いてみれば、そりゃそうか。。。の一発理解レベル)
e:ネイピア数

[e:ネイピア数]4:級数展開(マグローリン展開)からの ”e” の定義

指数関数のマクローリン展開を用いると、e を極限だけでなく級数からも定義できることがわかる。e^x の導出と関数形の特徴を式展開で追い、ネイピア数が自然に現れる理由を整理した覚書。ついでに、極限からの e の定義式 ( lim(1+1/n)^n ) と、マグローリン展開からの e の定義式( ∑1/n! )が等しい事も追加で確認
e:ネイピア数

[e:ネイピア数]3: 指数関数 \( e^x \) の求め方とその指数 \(x \) が示す意味。 \( \dfrac{1}{e}\) の求め方もついでに

ネイピア数 e の定義式をもとに、指数関数 e^x がどのように導かれるかを式展開で理解。x 乗の役割を直観的に捉えられるようにするための覚書。e^x があれば、1/eはついでの理解になるので簡単に追記
e:ネイピア数

[e:ネイピア数]2:微分における ”\(e \)” の登場:対数の微分の中で見つかるネイピア数 ”\(e \) の定義” と それを使った対数/指数の微分への展開

対数 logₐx の微分を基礎から式展開で追い、底の変換公式とネイピア数 e が自然に現れる理由を解説。オイラーが発見した極限式、平均値定理による導出も併せて整理した覚書。
座標・単位・実数・虚数

[虚数] 虚数とは?虚数のとらえ方とその特徴。&虚数と実数を組み合わせた世界

虚数をとらえるのに、実数という元数に、もう一つの元数を加えたものと捉える(直線から平面に広げる感じ)。つまり、二元数とした時に追加した元数の名前が虚数で単位がi。実数軸と虚数軸がなす平面を複素平面。この平面上での、iの振る舞いは面白い。iをかけると90°づつまわりだす。
座標・単位・実数・虚数

[極座標] 座標軸→ピタゴラスの定理→三角関数→極座標までの流れ

工学で使用される座標軸の定義と極座標の定義の話。極座標は定義を忘れないように、はじまりのピタゴラスの定理から三角関数の話、極座標の定義への利用までの流れまでの覚書
スポンサーリンク