基礎関数・公式 オイラーの公式1 : 世界で最も美しい公式の見かた、使いかた 世界で最も美しいといわれる式 e^(iπ)=-1 はオイラーの公式 e^(iθ)= cosθ + i sinθ から算出される。このオイラーの公式の背景が美しいと言われる根拠とこの式のその使われ方を少し。美しい公式だね” だけでは、ちょっともったいない 2021.10.12 2025.11.02 基礎関数・公式
基礎関数・公式 三角関数2:\(sin x \) と \(cos x \) のたし算 と ひき算 はじめに\(sin x \) と \(cos x \)のたし算 / ひき算について。つまり、\( a \cdot cos x ± b \cdot sinx \) の型この三角関数は、\( \sqrt{a^2+b^2} \cdot cos(x... 2025.09.22 2025.11.02 基礎関数・公式
基礎関数・公式 三角関数1:加法定理はベクトルの内積計算と同じ ベクトルの内積として三角関数の加法定理をみれば、そのしくみは簡単にわかる(図でも書いてみれば、そりゃそうか。。。の一発理解レベル) 2025.09.20 2025.11.02 基礎関数・公式
座標・単位・実数・虚数 虚数とは?虚数のとらえ方とその特徴。&虚数と実数を組み合わせた世界 虚数をとらえるのに、実数という元数に、もう一つの元数を加えたものと捉える(直線から平面に広げる感じ)。つまり、二元数とした時に追加した元数の名前が虚数で単位がi。実数軸と虚数軸がなす平面を複素平面。この平面上での、iの振る舞いは面白い。iをかけると90°づつまわりだす。 2021.11.05 2025.11.02 座標・単位・実数・虚数
座標・単位・実数・虚数 2. 角度単位 ”ラジアン”が便利な理由 日常の角度表示と違い(度数表示:90°とか360°とか)、数学、物理ではラジアン表示(π)が主に使用される。圧倒的に使い勝手が良いからである。ラジアン表記の意味と使い勝手の良いところを説明。ラジアンの値は、r=1の円(周長:2π)を、中心角Θで切り取った時の ”円弧の長さ” である。 2021.07.20 2025.09.25 座標・単位・実数・虚数
座標・単位・実数・虚数 1. 座標軸→ピタゴラスの定理→三角関数→極座標まで 工学で使用される座標軸の定義と極座標の定義の話。極座標は定義を忘れないように、はじまりのピタゴラスの定理から三角関数の話、極座標の定義への利用までの流れまでの覚書 2021.07.19 2025.10.02 座標・単位・実数・虚数