PR

実数・虚数

オイラーの公式

2. オイラーの公式 : 世界で最も美しい公式の導き方

オイラーの公式は、基本、指数関数(e^θ) と 三角関数(sinθ、cosθ)の等式化であるが、ただこれを関連付ける時に、e^θ、sinθ、cosθ の各々3つが持つ一般的な性質を, マクローリン展開(級数展開)を利用して見事に組み合わせている。この成立過程も非常に美しい。このあたりの話を。。。
オイラーの公式

1. オイラーの公式 : 世界で最も美しい公式の見かた、使いかた

世界で最も美しいといわれる式 e^(iπ)=-1 はオイラーの公式 e^(iθ)= cosθ + i sinθ から算出される。このオイラーの公式の背景が美しいと言われる根拠とこの式のその使われ方を少し。美しい公式だね” だけでは、ちょっともったいない
実数・虚数

3. 虚数とは?虚数のとらえ方とその特徴。&虚数と実数を組み合わせた世界

虚数をとらえるのに、実数という元数に、もう一つの元数を加えたものと捉える(直線から平面に広げる感じ)。つまり、二元数とした時に追加した元数の名前が虚数で単位がi。実数軸と虚数軸がなす平面を複素平面。この平面上での、iの振る舞いは面白い。iをかけると90°づつまわりだす。
実数・虚数

2. 実数の世界:実数は無理数と有理数で成り立ち”連続性”あり。無理数は”無” +”理数”

有理数と無理数の違い。有理数は比(分数)で表記できる数、無理数はそれ以外の数とされている(理数とは比であらわされる数)。無理数への理解に、この二つを同じ表記方法としてみる。二つは循環する無限小数/循環していない無限小数 で分類できる。
実数・虚数

1. 1=0.999・・って?

1= 0.9999・・・への理解は、同じ点を示しているが表示が違うだけと捉える。実数の世界では点は連続しているのである。ほぼ等しいのではなく、(極限では)等しいと理解する。この等式の両辺は”等しい”のである。
スポンサーリンク